Commodore

Amiga - SDBox

Bausatz Version

Aus dem englischen von https://github.com/jbilander/sdbox

Anleitung erweitertet Version 1.0 / 10/12/23

Bauteilliste

PART	Value	Description			
U1		Arduino Nano V3			
U2		Micro SD-Card Adapter (with onboard bidirectional level shifter)			
U2	Pin strip	1 Pcs 2.54mm Single Row Male Pin Header Strip			
		Für die Montage und den Anschluss des Micro SD-Card Adapters direkt in			
		die Basisplatine. Schneiden Sie einen mit 6 Pins und zwei mit einzelnen			
		Pins aus. Die derzeitigen abgewinkelten Pins auf dem Modul werden			
		ausgelötet und entfernt.			
U3	PVG612S	Solid State Relay, 6-SMD (0,300", 7,62mm)			
		Automatisches Ausschalten des Amigas (optional)			
J1	DB25	DB25 Male MountingHoles			
J2	5.5x2.1	Barrel Jack Power Connector, center positive (optional)			
	mm				
C1	100uF-	1210 ceramic decoupling capacitor for VIN, 16 VDC or at least			
	220uF	above you voltage input 7-12V.			
		Nicht erforderlich, wenn die Stromversorgung über USB erfolgt.			
R1	4.7k Ohm	1206 smd resistor (should give around 0.9mA when CS/SEL is			
		high)			
R2	4.7k Ohm	1206 smd resistor			
R3	120 Ohm	1206 smd resistor (should give around 2.14V, 24 mA over D1)			
R4	120 Ohm	1206 smd resistor (should give around 2.17V, 24 mA over D2)			
R5	330 Ohm	1206 smd resistor (should give around 1.2V and 10 mA control			
		current with the Amiga 47 Ohm in series from pin 14)			
		Nicht erforderlich, wenn U3 nicht ausgefüllt ist			
D1	LED 3mm	SD Activity LED, Diffused Orange / Amber, pitch 2.54 mm, 1.8V-			
		2.3V, 20-30 mA, 605-610nm			
D2	LED 3mm	Power LED, Green Diffused T-1, pitch 2.54 mm, 25 mcd, 565 nm,			
		2.2 V, 25 mA			
Q1	BC847BW	Small Signal Transistor, NPN polarity, SOT-323			
Q2	BC847BW	Small Signal Transistor, NPN polarity, SOT-323			
JP1	Solder	Enable this to reset Nano in conjunction with Ctrl-Amiga-Amiga			
	jumper	Aktivieren Sie dies, um Nano in Verbindung mit Ctrl-Amiga-Amiga			
		zurückzusetzen			
JP2	Solder	Enable this to use barrel jack connector without U3 chip			
	jumper	Aktivieren Sie diese Option, um den Klinkenstecker ohne U3-Chip zu			
		verwenden.			

Es ist zu empfehlen JP1 zu schießen, damit sich die SD-Box mit dem AMIGA resetet

Achtung

C1 / R5 und U3 werden nur benötigt, wenn eine externe Spannungsversorgung über den optionalen U3 Connector vorgesehen ist. Außerdem muss dann JP2 geschlossen werden.

Der Aufbau

Entfernen Sie zunächst die abgewinkelten Stifte vom MicroSD-Kartenadapter und ersetzen Sie sie durch gerade Stifte, wie auf den Bildern unten gezeigt:

Jetzt beginnen wir mit dem Löten der oberflächenmontierten Teile, den passiven Bauteilen, Beginnen Sie mit Q1 und Q2, R1-R4, (*C1, R5 und U3 werden nur benötigt, wenn die SD Box mit einer externen Spannungsversorgung betrieben*) wird. Ebenfalls wird der Jumper JP1 verlötet

Nun, da die Oberflächenmontage abgeschlossen ist, machen wir die Durchgangsbohrung, löten zwei abgeschnittene Stifte als Beinhalterung für den MicroSD-Kartenadapter an, auf denen der Adapter ruhen wird, so dass er auf gleicher Höhe wie der Nano ist.

Bei dieser Art von Steckern löst sich die Metallplatte, wenn man die Muttern des Steckers abschraubt. Wir müssen sie entfernen, weil wir sie auf der Amiga-Seite nicht entfernen wollen. Benutzen Sie etwas Sekundenkleber und einen Schraubstock oder ähnliches, um sie ein paar Minuten zusammenzudrücken, bis der Kleber einrastet. Seien Sie schnell, wenn Sie Superkleber verwenden! Setzen Sie die Schrauben wieder ein, während Sie löten. Die Metallteile sollen die Stifte stützen und etwas Kraft von ihnen nehmen, wenn Sie das Gerät in den Amiga ein- und ausstecken.

Löten Sie nun auch den MicroSD-Kartenadapter und den Nano auf die Platine.

Nun die zwei LEDs einzubauen, achtet auf die Einbauhöhe, die ist abhängig vom Gehäuse der SDbox !

Zur Info, Ich gehe hier nicht darauf ein. wie der Arduino Nano V3 geflasht wird. Im Bausatz ist der Arduino Nano bereits geflasht

Treiber auf dem Amiga "installieren"

Nach dem Motto, viele Wegen führen zum Ziel" möchte ich hier nur eine Variante vorstellen

Ich braucht dazu die Working SDBox Treiber ADF-DISK von meiner Homepage und Directory Opus wäre Hilfreich..

Auf der SDboxFB Disk (AFD) befinden sich die Treiber für die Verwendung der SD Box

Wenn Deine WB Version kleiner als 34.28 ist dann musst Du die Datei aus diesem Ordner nehmen , ist sie höher als 34.28 dann die aus dem Ordner 34.28+. Im Notfall hilft probieren Folgende Dateien müssen von der Diskette auf den Amiga DH0 kopiert werden

Fat95	-> L
spisd.Device	-> Devs
SD0	-> Devs
SD0.info	-> Devs

Hier die Datei FAT95 nach L

DOPUS.1		日
DOPUS.1		06
Dirs : 000/002	Files : 001/004 Bytes : 0026868/00	34371
SDboxFB	793K System	157.8M
1.3_v34.20 4.3_v34.28+	FileSystem_Trans	2392
SD0 SD0.info spisd device	26866 356 CLU CDFileSystem 2431 CrossDOSFileSystem 4716 CrossDOSFileSystem	17676 27488 24588
59130.00010	fat95 KingCON handler LZX.Keyfile PC2Am-handler port-handler ProfFileSystem	26472 64394 256 15144 1624 29464
Fra	ankyByte queue-handler ∨ ∨ SmartFilesystem	2664 92216
		>
<pre>DF0:</pre>	S A C DH0:L/	

Die Datei spisd.device nach Devs

DOPUS.1		6
DOPUS.1		96
Dirs : 000/002	Files : 001/004 Bytes : 0004716/0034371	
SDboxFB	793K System	157.7M
1.3_v34.20 1.3_v34.28+ FAT95 SD0 SD0_info Spisd.device	26868 356 2421 4716 4716 26868 356 2421 4716 2421 4716 4716 4716 4716 4716 4716 4716 471	6780 904 590 65760 4292 3624 1059 7062 27420 904 26 <u>2</u> 144
	spisd.device	4716
Fre	ankyByte V System-configuration	232
		\geq
< DF0:	> S A < DH0:Devs/	X

Aus dem richtigen Verzeichnis SD0 und SD0.info nach Devs

Der Amiga ist nun soweit vorbereitet!

SD-Karte vorbereiten

Damit der AMIGA und die SD-Box mit der SD-Karte umgehen können, muss diese vorbereitet werden,

- 1. SD Karten einstecken bzw. mit dem PC (in meinem Fall Windows) verbinden
- 2. Computerverwaltung Datenträgerverwaltung starten und die SD-Karte auswählen (Achtung, bitte nicht ausversehen eine andere Platte oder Partion wählen!)
- 3. Rechtsklick auf SD Karte --> Volume löschen
- 4. Rechtsklick auf SD Karte --> Volume erstellen / festlegen
- 5. 2048MB oder kleiner wählen (größer würde ich nicht empfehlen. Bei mir hat es bei einer 32GB SanDisk mit der 2048MB Partition sehr gut funktioniert).
- 6. Dateisystem = FAT (nicht FAT32, nicht exFat)
- 7. Optional: Volume beliebig benennen, wenn ihr wollt!
- Wichtig, nicht jede SD-Karte funktioniert mit der SDBox !
- Nicht alle Turbokarten funktionieren mit der SDBox

🗢 Eigenschaften von SDBOXSD (M:) 🛛 🛛 🗛 🗡					
Allgemein	Tools	Hardware	Freigabe	ReadyBoost	Anpassen
-	8	DBOXSD			
Typ:	Typ: USB-Laufwerk				
Dateisyst	em: FA	Т			
Beleg	jter Spei	cher: 13	3. 107. 200 B	ytes 12,5	MB
Freier Speicher: 1.952.710.656 1,81 GB					GB

SD-Box an- bzw. abschliessen

Die SD-Box darf nicht während des AMIGA-Betriebs ein- oder ausgesteckt werden, deshalb bitte an folgende Vorgehensweise halten!

- 1. mircoSD Karte einsetzen
- 2. SD-Box an Parallelport des AMIGA in ausgeschaltetem Zustand hängen
- 3. USB-Kabel (+5V) anstecken, 2 LEDs auf dem Arduino Board sollten leuchten, nämlich PWR und L
- 4. AMIGA einschalten, die LED "L" sollte erlöschen
- 5. SD-Box mounten (dazu anschließend mehr)
- 6. Wenn die Arbeiten abgeschlossen sind, den AMIGA ausschalten
- 7. Danach das USB Kabel vom Arduino ziehen

SD-Box mounten

In der Workbench eine Shell (CLI) starten

Mit folgendem Befehl mounten: mount sd0: from devs/sd0

o Workbench	
Ram Disk ClearRAM	0,
n AmigaShall	
New Shell process 7	
7.System:> mount sd0: from devs/sd0 7.System:>	
FrankyByte	

Nun mit cd sd0: das SD Laufwerk "aktivieren"

Sollte diese Fehlermeldung erscheinen : bad number

Dann liegt es

- An der SD Karte
- An der SD Treiber Version, einfach eine andere Version ausprobieren

Wird die SD Karte gemountet, dann erscheint das Laufwerk auf der Workbench Je nachdem welchen Namen ihr der SD Karte gegeben habt.

Da die Workbench nur Dateien mit info Verweise anzeigt, solltet ihr **show all files** aktivieren

Nun sollten die Datein , wenn ihr welche auf die SD Karte kopiert habt, angezeigt werden

Wie schon geschrieben, eine Raketengeschwindigkeit könnt ihr nicht erwarten, aber es ist ein einfacher Datenaustausch zwischen einem Amiga und PC,MAC, usw...

